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A DIRECT BOUNDARY ELEMENT METHOD 
FOR SIGNORINI PROBLEMS 

HOUDE HAN 

ABSTRACT. In this paper, a Signorini problem is reduced to a variational in- 
equality on the boundary, and a direct boundary element method is presented 
for its solution. Furthermore, error estimates for the approximate solutions of 
Signorini problems are given. In addition, we show that the Signorini problem 
may be formulated as a saddle-point problem on the boundary. 

1. INTRODUCTION 

The Signorini problems are a class of very important variational inequali- 
ties, which arise in many practical problems such as the elasticity with unilat- 
eral conditions [17, 5], the fluid mechanics problems in media with semiper- 
meable boundaries [4, 7], the electropaint process [1], etc. In the literature, 
there are many authors who have studied the problems, established the exis- 
tence and uniqueness, and obtained the regularity results for Signorini problems 
(see Brezis [3] and Friedman [6]). Furthermore, the numerical solution of the 
Signorini problem by the finite element method has been discussed [7, 8]. We 
know that the solution of the Signorini problem satisfies a linear partial differ- 
ential equation in the domain, even when the problem is nonlinear. Hence, it is 
natural and advantageous to apply the boundary element method to Signorini 
problems. An indirect boundary element method for solving Signorini problems 
has been presented in [9]. 

In this paper, we will present a direct boundary element method for solving 
the same problem. First, using the Calder6n projector for the traces and the 
normal derivative of the solution of the Signorini problem, this latter is reduced 
to a variational inequality on the boundary F based on a direct boundary el- 
ement method. The resulting variational inequality on the boundary involves 
both weakly singular and hypersingular boundary integral operators. The bi- 
linear form arising in this boundary inequality is continuous and coercive on 
suitable subspaces of the Sobolev space H12 (r) x H" 12(F). This leads to 
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existence and uniqueness for the solution of the boundary variational inequal- 
ity. Furthermore, the Signorini problem can also be formulated as a saddle- 
point problem involving only boundary integral operators on F, which finally 
we can solve with a uniform boundary element Galerkin method and obtain 
quasioptimal error estimates for the Galerkin error. 

Let Q be a bounded domain in R2 with a smooth boundary F. Suppose 
F = rO u F, (as shown in Figure 1), with Fo 0 . We define 

*I 
H (2){U E H (), ul= O}, 

a(u, v) = Vu Vv dx, 

L(v)= fvdx+j gvds, 

* 1 
K ={v EH (Q),v >O a.e. onFl},r 

K ={trace of v on F, v K}, 

H'(F) - {trace of v on F, v E H (Q)}, 

H l(IF) = E H '/(IF), /lds= O} 

V = HII2(F) x H-12 (F) with norm 11(v, #')JII = IIVII1/2,r + 14UIII/2, F 

where Hm(Q) and H'(F) denote the usual Sobolev spaces, m, a are two real 
numbers (see [15]), and f E H' 1() and g e H1 /2(F) are given functions. 

We know that K is a closed convex set in H (Q). 

rv 

n 

FIGURE 1 

We consider the following variational inequality: 

find u E K such that 

(1.1) a(u, v - u) > L(v - u) Vv E K. 

Problem (1.1) is a model for Signorini problems. The following theorems are 
known [8]. 

Theorem 1.1. The variational inequality (1.1) has a unique solution. 
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Theorem 1.2. The solution of problem (1.1) is characterized by 

-Au=f a.e.inQ, 

(1.2) u=O a.e. on FT, 

u > O, au/an > g a.e. on F 

u(au/lan - g) = 0 a.e. on rF. 

Next, let uo be the solution of the following boundary value problem: 

(1.3) -Au0=f inQ, 

u=O= onF. 

Hence, we have by the first Green's formula with u e H (Q) and f E L2(Q) 

-a(u0, v+u0-u) = -f(v + uo - u) dx 

(1.4) 
(1.4)-f ?(v + uo - u) ds v EK. 

From (1.1.) and (1.4) we obtain with u, u0 eK, 

a(u-uo, v -(u- u0)) > f (g- ?) (v - (u-u0))ds Vv e K. 

Let w = u - uo and g* = g - au0/On; then w solves the following problem: 

Find w E K such that 

a(w,v-w)> g*(v-w)ds VvEK. 

Therefore, without loss of generality, we may assume that f 0. In this case, 
problem (1.1) is reduced to 

Find u E K such that 

(l1.1l)* a(u, v - u) > g(v - u) ds VvEK. 

2. AN EQUIVALENT BOUNDARY VARIATIONAL INEQUALITY 

FOR PROBLEM (I.l) 

Suppose that u is the solution of problem (1.1)*; then in the domain Q, 
Au = 0. Let A- =du/nlr E H /2(r) . By Green's formula we obtain 

(2.1) U r an u(y) dsy - G(x, y)A(y) dsy VX E Q2 u(y 

where G(x,Y)= logIx - yj, x 54 y; ny denotes the outward unit normal 
to F = 9Q at y E F. By the properties of the single-layer and double-layer 
potentials, we obtain the first relationship between A and ulr: 

(2.2) u(x) f G(x,y)u(y) ds - G(x,y)A(y)ds VxEF. 
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Furthermore, using the behavior of the derivative of the single-layer and double- 
layer potentials [10, 12, 16], we get 

(2.3) A(X)=f a( u(y)dsy j a y), (Y) VxEF, 2 anxany ~~~anx 
where 

[ a2G(x, y) dsfdGuxy)d 
Ir On0nyu( ) dsy = 5 G(x, y) d( ds Vx E IF 

Ir anxany ds ds y VxF 

Multiplying (2.2) by a function ,u E H1/2 (F), we get 

(2.4) - r ( [u(x)l(x) dx + and - u(y)4u(x) dsY dsx 

- ffj G(x, y)A(y)/) (x) ds, dsx = 0. 

Let 

ao(4u, A) = -ff G(x, y)A(y)4u(x) dsy dsx, 

b(lu, u)= - u(x),1(x)dsx- a u(y)(x)dsdsx; 
y 

then equation (2.4) can be rewritten as follows: 

(2.4)* -b(,u, u) + aO(u, A) = 0 Vu EH-(I) 

For any v E H1 (Q), we have, for u satisfying Au = 0 in Q, 

(2.5) a(u, v) Vu * Vv dx =f|Av ds. 

Inserting (2.3) into (2.5) and integrating by parts, we obtain 

a(u,v)= - G(xy) ds d s dsx 

f 

IraG(x, A(y)v(x) ds dsx + Av ds 

du dv) +b(AZ,v). 

Hence, the variational inequality (1.1)* is reduced to the following boundary 
variational inequality: 

- - 1/2 
Find (u, A) E K x H (F) such that 

(2.6) aO (d' -d + b(A, v - u) >| g(v - u) ds Vv E k, (0 ds b Vv)K, 

- b(/1,Iu) +a0(411,A)L=O V/uE H 1(IF); 
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or, 
* 1/2 

find (u, A) E K x H (F) such that 

(2.7) A(u, A; v-u,Ju) > |fg(v-u)ds VveK, lieH 2(F), 

where 
/du dv \ 

is a bilinear form on V x V. 
We now prove the following lemmas: 

Lemma 2.1. There is a constant a,o > 0 such that 

(2.8) IIdv/dsIj,112,, >? a0I1V11/2,r Vv eH (F). 

Proof. Let 0 = 27rs/L, where L denotes the length of the boundary F and s 
denotes the length of the segment from the point P0 E F to a point p E F along 
the boundary F. Hence, we only need to prove (2.8) when F is the circle with 

radius 1 . On the other hand, we know that the space Co?(Q) = {v E C(Q), 
*1I support of v c Qj2\0} is dense in H (Q). If we can prove (2.8) for any 

v E C??(Q), then (2.8) holds for v eH (I). 

Suppose r is the circle with radius 1 . For any v E C??(Q), on F we have 

a 
00 

v = 2? + Z(an cosno + bn sin nO), 
n=1 

where 
1 2 

a = v- v(0)cosn6d6, n=O,1,2,... 
n ir 

bn =- v(0) sin n6 d6, n=1,2 , 2, 

We know that [14, p. 21] 
2 00 21/22 

(2.9) IIVII1/2, r= 2 2(J1 +n (an +bn) 
n=1 

Furthermore, we have 
00 

d 6!= (nbn cosnO - nan sin nO), 
n=1 

(2.10) dO 1v2 = Z(1 + n2) 2(n2bn + n2an) 

00 

> (1 +n 2)1/2(a2 +b2) 

n=1 
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On the other hand, we know that 

1 'I6'd - _ , ___dv_ 
a0= r ]V7- 

1 dO 

By vlr = 0, that is, v() = 0, - < 0 < ?6?2 (31 '32> 0), there is a function 
q(6) E C?(F) such that q5I = 1, q(6) = 0, for 101 < 2 min(, a2) Hence, 
we get 

12ldv 

ao=-] / 7-jO(O)dO, 

where 60b(6) E C??(F). Furthermore, we obtain 
1 dv 

laol ? 7IIb 6l?()II/l2 r ||dO ||_ 
/2,r 

(2.11) dv C0 =1ii6q(6)i121/20, 
1/ d-2 r -1/2 dv2 

midO 1/, 1 ) 

Combining (2.9), (2. 10), and (2.1 1), we obtain the inequality (2.8) with a,= 

Lemma 2.2. A(u, A; v, u1) is a bounded bilinear form on V x V; that is, there 
exists a constant M > 0 such that 

(2.12) IA(u, A; v, ,u)I < MII(u, ')IVII(v, u)IIv V(u, A), (v, u) E V. 

Furthermore, there is a constant A > 0 such that 

(2.13) A(v, u; v, u) > fiII(v, 4u)IIv V(v, 41) E V. 

Proof. It is straightforward to check that A(u, A; v, 41) is a bounded bilinear 
form on V x V (see [11]). We now prove inequality (2.13). We have 

(2.14) A(v, 1;v, i) = a ( dv d) + a0(l,1 /1) 

We recall (see [13]) that the bounded bilinear form ao(A, ,u) is H "2(F)- 
elliptic, i.e., there exists a positive constant f0 such that 

(2.15) aO(y I ) > 
&11911l-1/2,F V8 H (r). 

Hence, 

/dv dv\ dv 2 1/2 
(2.16) a d> - VvH (E)H 

0ds /s ds -/, 

Combining (2.14), (2.15), (2.16), and (2.8), we get inequality (2.13) with f = 
min(fJ0, ao0f0) > ? ? 
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Lemma 2.3. Suppose u E Hll(F) n Hl/2+a(F) and A E H-l (IF) n H- (I) 
(0 < a < 1); then there exists a constant Ma > 0 such that 

JA(u, A; v, ,u)l| < kM IU,(lull2+r+ l_ l2+ 1r) 

(IIVIIl/2-ar + II'12 1/2r) V(V, ,U) E V. 

Proof. We consider the operators 

KO: Hr() Hr+H (r), -3 < r, 

where Ko 0 = - fr G(x, y)0(y) dsy VOb(y) E Hr(r), and 

K1:H r(r) - Hr(r) -1 < r, 

where K,$ = flr(&G(x, y)/&ny)q(y) dsy V8 E Hr(r) . We know (see [10]) that 
Ko and K1 are bounded operators. Let (v, 4u) = fr v,u ds; then we obtain 

A(u, A; v, 411) KO (u dv + (K0(A), 41) 

+ 2(v, A) - 2(u, 41) - (K v, A) + (K u, 41). 

Furthermore, we have for 0 < a < 1 

|(K (du) dv ) < IKo (du) dv 

? ds 
l1/2-a, IF 

< IIKOII IIUIII/2+a,]llVlll,2-a,r 1 

I(V, A)l < IIAII-1/2+aJFIIVII1/2-ajr 

l(Kiv, A)l ||_/+rlll/_, 

< Ca II'II-1 /2+ajrllV ll /2-a,r15 

where 
IIKIVIII/2-a,r 

VE 1er/2Pt(v ) IIVII1/2_a F 

Similarly, we get 

I (KoA, , u) I < IIKO 11 IIAII - 1/2+a, r'IIJ 11 - 1/2-a, IF 

05 u,,)I < IIUII1/2+a,rlIIJll-1/2-a,r 

I(Kl U, #)1 ' lCalAUIII/2+c, rl'l81 /2- ,rF5 

where Ca = sUPEH'/2+(v(r) IIKi(U)III/2+a, /IIUIII/2+Car . Then inequality (2.17) 
follows immediately. o 

By Lemma 2.2, an application of Theorem 2.1 in [8, Chapter I] yields the 
following result. 
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Theorem 2.1. Suppose that g E H" 12(PI); then the variational inequality (2.7) 

(or (2.6)) has a unique solution (u, A) E K x H- '2(IF) 

Suppose (u, A) E K x H "l2(F) is the solution of (2.7). By formula (2.1), we 

obtain the function u(x) e Hl(Q) and aul9n = A; then, for any v E H (n) 

and 4ueH' 2(F),wehavewith Au=0 in n: 

a(u, v - u) = Vu Vvdx= A(v - u)ds =A(u, A; v - u, ). 

*1 
Hence, u(x) e H (Q) is the solution of the original problem (1.1)*. This 
means that the boundary variational inequality (2.7) is equivalent to problem 
(1.1 )*. Furthermore, we have the following 

Theorem 2.2. The variational inequality (2.6) is equivalent to thefollowing saddle- 
point problem: 

(2.18) Find (u, A) E K x H 
"2(F) such that 

(2.18)~~~~~~~~~~~~~~~*-/ 
L(u, ,u) < L(u,I A) < L(v, A) Vv E K, p E H ll(IF) 

where 

L(v, u) = ~a 0 (+ ds) + b(p, v) - !a2(, U) - gv ds. 

Proof. Suppose that (u, IA) E K x H 2(F) is the solution of (2.18). Then, for 

any ju e H1/2(r) and any real number e, A + 81u 1 H l/2(p). we have 

L(u, A + e,u) < L(u, A), 

that is, 
2 

e[b(g, u) - ao(i, A)] - 2-ao(u, ,u) < 0. 

Since e is an arbitrary constant, we obtain 

-b(,u, u) + ao(,u, A) =0 VP E H2(IF) 

On the other hand, for any u, v E K, we know that u + t(v -u) E K (0< 
t < 1); then K is convex, and we get 

L(u, A) < L(u + t(v - u), A) Vv E K, 

that is, 

t[ du dv du\ b ~d [a (d dbd)+(A, v- u)- g(v -u)sds 

ta (d(v-u) d(v-u) >0 + 2f aO ds -' ds 
> 
-. 
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Since 1 > t > 0 is an arbitrary constant, we get 

a du d(v- u ) + b(A, v - u) > g(v - u) ds V EK. 
* 

1/2 

This means that (u, A) E K x H (F) is the solution of (2.6). Each of the 
above steps is reversible, and we conclude that if (u, A) is a solution of (2.6), 
then it is a solution of (2.18). o 

3. THE DISCRETE APPROXIMATION OF 

THE BOUNDARY VARIATIONAL INEQUALITY (2.7) 

Suppose that Sh and Sh are two finite-dimensional subspaces of H112(F) 

and H112(F), respectively. Let Kh = {Vh , Vh E Sh U K}. Moreover, we 

assume that Kh is a closed convex nonempty subset of Sh . 

Now we consider the discrete problem 

Find (u h Ah) E Kh IX Sh2 such that 

( 3. 1 ) A(uh, Ah; vh uh l Ph) >f g(vh-uUh) ds Vvh E Kh, Ilh eSh2 

It is straightforward to prove: 

Theorem 3.1. The problem (3.1) has a unique solution (uh, Ad) E Kh x Sh. 

Furthermore, we obtain the error estimate stated in the following theorem. 

Theorem 3.2. Suppose that the solution of (2.7), (u, A), satisfies u E K U 

H (F),, A E H / (F)UH-l2+c(f) and g e H 2+a(), where 0 < a < 

then the following error estimate holds: 

2(- A-+< C inf [llu - v11l/2, + Alu - v* l/2-,r } 

(3.2) VhEKh, 

+^S inf IIA -h l-1/2,F IIA _Ph1-1/2-a,r]) 

where Ca is a constant independent of h1 and h2. 

Proof. Taking v = uh and ,u = Ah - A in (2.7), we have 

(3.3) -A(u, A; uh -u, AhA) < g(uh u) ds. 

Similarly, we get 

(3.4) -A(uh,Ah;vh uh Ah)<-j g(vh-u*)ds Vvhh eKhU PhhE Sh . 
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On the other hand, 

l(u -Uh I' i- A)ll2< -LA(u - uh 5A -h; U-U,A-h 

= )) {A(u-ush 'Ah' U-V hf I-Ah) 

+ A(u ,A;V-u Ah i 

+A(u, 2.; vh- U, Ph~ 2. 
-A(Uh, IAh; Vh - Uh, Ith - h) 

(3.5) - A(u, A; uh -u, Ah-A) 

<~~~ {A(u-US Ah; U -Vh I A 
Ph) 

+A(u, A; vh -U, h-2) 

rg(Vh -u) ds} VVh E Kh, h E Sh2 

Combining (3.5), (2.12), and (2.17), we obtain 

(u h, 2-Ah h) ||.< ? *{Ml (u-Uh, 2.Uh JI)I lU - Ilk, 2.- h lk IV 
+ Ma(tIUl 1/2+a r + II2A.I-1/2+ak,r) 1/2 

(11U -VklI1/2-a r + 12.-Uh 1l 1/2-a,r) 

+ 11 9 11-2+a, r, llu - Vh 11 1/2-a7 a, r} 
Then the error estimate (3.2) follows immediately. r 

Assume that the boundary r of Q is represented as 

(3.6) X1X=X1(S) X2=X2(S), 0 < S < L, 

and Xj(0) = Xj(L), j = 1, 2. Furthermore, F is divided into segments {T} 

by the points X% = (X1(Sd) %2(Si)), i = 1, 2, ..., N1, that include the two 
endpoints of rF, with Si = O, SN1+1 = L; we define 

hi =max S 15l - Sil. 

This partition of F is denoted by 9g. Let 

Sh = {Vkh E C(r), VhlT 
is a linear function 

(3.7) VT EJ and hlrkF =O}, 

Kh 
= {Vh E Sh, .Vhk 0 on IF}. 

Similarly, we have another partition I5 . Let 

(3.8) Sk = {IhlT is a constant VT E.97 and frIlk ds = 0}. 

Obviously, Kh is a closed convex subset of Sk, and it is nonempty. The 
subspaces Sh and Sh are two regular finite element spaces in the sense of 
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Babuska and Aziz [2] that satisfy the following approximation property: 

inf {llu - vhII2r +IIUV l/2-r} 

(3.9) VhEKh 

< C1h12 U 11 1/2+a, r + IIU U1/2+a, r] 

inf { IIA - Ph 11-1/2,r + IIA - IUhl I-1/2- a, r} 

(3.10) Phe Eh2 

< QRh2 [II I_1/2+a, r + IIAII-1/2+a,lr] 

Combining (3.9), (3.10), and (3.2), we obtain 

Corollary. Suppose that the subspaces Sh and Sh are given by (3.7) and (3.8); 
moreover, let the solution (u, A) satisfy the assumptions of Theorem 3.2. Then 
the following error estimate holds: 

II (u - uh h a- h)v ? I 1/2+,r + IIUII1/2+a,F] 

+h2ca 2 
+ h2 [IIIK-1/2+a,F + IIAII-1/2+a]l 

where Ca is a constant independent of h1 and h2. 

4. THE SOLUTION OF THE BOUNDARY VARIATIONAL INEQUALITY (3.1) 

In this section, we will present an approach for solving problem (3.1). Let 
a1(u, v) = ao(du/ds, dv/ds); then problem (3.1) can be rewritten as follows: 

Find (uh, 'Ah) E Kh x Sh such that 

(3.1)* a,(Uh Vh-Uh) + b(AhV Vh-Uh) > g(Vh Uh)ds vh EKh,, 

-b(Ph, Uh) + aO(,hAh) = O , 8h E Sh. 

As a first step, for any given u E H'1/2(F), we solve the following problem: 

Find Ah (u) E Sh such that 

(4.1) aO(ih 5 Ah) = b(hh, u) Vh E Sh. 

Problem (4.1) has a unique solution Ah (u), and 

IlAh(U)II-112 ,F < IIbIIIIuIIj1/2 ,r,/fo 

Let 4ui(x), i = 1, 2, ..., N2, denote a basis for the space Sh and 

N2 

Ah(u) = ZAi(u),Ui(x) = A. #(x), 
i=l1 

where AT = (AI(u), A2(u) AN2(u)) and ,(X)T = (X), P2(X) 

AN2(x)). From (4.1), we obtain 

(4.2) GA = F(u) 
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where G = (aO(ui, j))N,2 and 

F(u) = (b(,ul, u), b(u2, u), , b(uN, u)). 

G is a symmetric and positive definite matrix. Hence we get 

(4.3) A = G F(u) 
T and A A(u)=A *,u(x) . Let Ah (u, v) = a,(u, v) + b(A(u), v);then Ah(u,v) 

is a bilinear form on H"/2 (i) x H"/2(r) . Furthermore, we have: 

Lemma 4.1. (i) Ah (u, v) is a bounded bilinear form on H"l2(J) x H1/2(r) 

that is, there exists a constant M > 0 independent of h2 such that 

(4.4) JAh(u )< lv ,, l l,,r Vu,vE U iHl2 

(ii) Ah (u, v) is symmetric. 

(iii) Ah (u, v) is H" (1I)-elliptic uniformly for h2; that is, there exists a 
constant y > 0 such that 

(4.5) A h2(v , v) > 711V|| 1/2, rvv E H l(IF) 

Proof. (i) We have 

lAh2(u, v)l = la,(u, v) +b(Ah(u)5 v), 

? lla,l 11ll II 1/2, rIIVI 1 /2, r' + llbll IIAh (U) 1ll1/2, rllv ll 1/2, r 

< {llajl + Ilbil /10}llull1/2,rllvll1/2, r 

The inequality (4.4) holds with M = I a1I + 1Ib112/180. 
(ii) From (4.1), we get 

aO (Ah (v ), Ah (U)) = bQ(Ah (V), U), 

aO(Ah(u), 5Ah(V)) = b(Ah (U), V) . 

By symmetry of ao((A, ,ui), we obtain b((Ah(v), u) = b(A)h(u), v) . Hence, 

Ah2 (u, v) =al(u, v)+b (Ah (U) 5v) = a, (v, u) +b(Ah (V) 5u) = 
Ah2 (v, u). 

(iii) We have 

Ah2(v, v) = al(v, v) + b(Ah(v), v) 

= al(v, v) + ao(Ah(v), Ah , ) 

=A(v ,A h(V); v,5 Ah(V)) > fi||V||l/2,F vv E HI(r.[ 

In the second step we reduce the boundary variational inequality (3.1)* to: 

Find uh E Kh such that 

(4.6) A.u v uh ) , - ?f( v -uh)ds Vv EK. 
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Let 

J(u) = 'Ah (u u)-jguds. 

By Lemma 4.1 we obtain [8, p. 10]: 

Theorem 4.1. The boundary variational problem (4.6) is equivalent to the follow- 
ing minimization problem on Kh 

(4.7) J(uh) = min J(vh). 
Vh EKh 

A method for solving problem (4.7) can be found in [7]. After solving (4.7), 
we can get A(uh) from problem (4.1); then formula (2.1) gives the solution of 
the original problem. 
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